

Education

Stony Brook University

Stony Brook, NY

Sept. 2016 - Present

Ph.D. Candidate, Computer Engineering

.....

Huazhong University of Science and Technology

Sept. 2012 - June 2016

B.E., IC DESIGN AND INTEGRATED SYSTEMS

Publications

- T. Ji, S. Jain, M. Ferdman, P. Milder, H. A. Schwartz, and N. Balasubramanian, "On the Distribution and Sparsity of Attention within Transformers," in *Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021*, Aug. 2021.
- Y.Shen, T. Ji, M. Ferdman, and P. Milder, "Argus: an End-to-End Framework for Accelerating CNNs on FPGAs", in IEEE Micro, 2019.
- Y.Shen, **T. Ji**, M. Ferdman, and P. Milder, "A scalable memory interconnect for many-port DNN accelerators and wide DRAM controller interfaces", in 28th International Conference on Field Programmable Logic and Applications(FPL)., 2018.

Research Projects

Inference-time Sparse Attention in the Transformers and its Hardware Acceleration

Stony Brook, NY

AHGO, COMPAS AND LUNR LAB@STONY BROOK UNIVERSITY

Sep. 2020 - Present

- Discovering the high sparsity in the self-attention mechanism
- Pruning 80% of the sparsity with less than 1.0% accuracy drop, no retraining.
- 3-bit inference-time quantization.
- Utilizing the sparsity in the hardware accelerator for the transformers model.

Long Short-Term Memory Neural Network Acceleration on FPGA

Stony Brook, NY

AHGO LAB AND COMPAS LAB@STONY BROOK UNIVERSITY

Aug. 2018 - May 2020

- a highly scalable and resource-efficient FPGA hardware acceleration on FPGA
- a cycle-accurate latency analyzer helping analyzing delay of LSTM computation
- a resource-aware latency optimizer which generates the optimized accelerator

High Resolution Time-to-Digital Converter on FPGA

Stony Brook, NY

AHGO Lab and COMPAS Lab@Stony Brook University

May 2019 - April 2020

- 1.9-ps RMS resolution at 590MHz on Xilinx Ultrascale+
- Double-Edge triggered carry chain for better performance

Scalable memory interconnect for many-port DNN accelerators on FPGA

Stony Brook, NY Jan. 2017 - July 2018

AHGO LAB AND COMPAS LAB@STONY BROOK UNIVERSITY

• An interconnect is implemented between DNN accelerator and DRAM controller with wide data width without unnecessary flexibility

- Our design can both be scalable and reach high throughput.
- Our design reduces LUT and FF use by 4.7x and 6.0x, and improves frequency by 1.8x.

Working Experience

Amazon Web Services (AWS) Redshift AQUA Team

East Palo Alto, CA

SDE INTERN

May. 2020 - Aug. 2020

- Achieving **1.29x** DDR4 throughput by removing the auto-refresh overhead
- Offline DDR Retention Time profiling and online DDR access checking

Skills

- C/C++, Python, Verilog, SystemVerilog, SpinalHDL, Chisel, Tensorflow, PyTorch, Huggingface
- Static Timing Analysis, manual route&placement
- Xilinx Spartan-6, Virtex-7, Virtex-Ultrascale+